Efficacious and Sustained IV Gene Therapy of Canavan’s Disease - The White Matter Does Matter

Guangping Gao
Penelope Booth Rockwell Professor in Biomedical Research
Director, Gene Therapy Center
University of Massachusetts Medical School, USA
Efficacious and sustained IV gene therapy of Canavan’s disease - The white matter does matter

Guangping Gao, PhD
Penelope Booth Rockwell Professor in Biomedical Research Director, Gene Therapy Center
University of Massachusetts Medical School, USA
CANAVAN DISEASE (CD)

- Genetic defect
 - Rare autosomal recessive mutations (> 50 identified) in AspA gene (1/6,400-135,000 people primarily with Ashkenazi Jewish heritage)

- Biochemical defect
 - Loss of AspA enzyme activity
 - N-acetyl aspartic acid↑ (NAA) in the CNS and urine

- Fatal neurological disorder
 - White matter degeneration
 - Hydrocephaly/leukodystrophy
 - Psychomotor defect
 - Early death
 - No treatment available
Molecular Etiology of the Disease

Neuron Oligodendrocyte

Neuron

Oligodendrocytes

L-aspartic acid

acetyl-CoA

N-acetylaspartate

aspartate

3Na^+

NAA transporter

$\text{NaC}3$

acetate

aspartoacylase

L-aspartic acid

N-acetylaspartate

3Na^+

NAA
GENE THERAPY OF CANAVAN’S DISEASE - AN ATTRACTIVE THERAPEUTICS

- CD gene therapy trial with the 1st generation of recombinant adeno-associated virus (rAAV) vector in early 2000 by Mathew During and Paola Leone
 - Multiple site intracranial injections through 6 burr holes
 - Limited clinical improvement

- Challenge
 - Diffused white matter degeneration throughout the CNS requires wide-spread global CNS transduction
KEY ELEMENTS IN GENE THERAPY RESEARCH

- Gene delivery vehicle (i.e. vector)
- Method of vector delivery
- Therapeutic gene (e.g. AspA)
- Bona fide animal model for the disease
ATTENTION!

The entire presentation will be provided to registered attendees only at the conference!

To view the rest of this exciting presentation and many more please register for the conference at

www.gtcbio.com