Genetically Encoded Phosphoserine as a Tool to Advance Kinase Research and Discovery

Jesse Rinehart
Assistant Professor, Cellular & Molecular Physiology
Yale University School of Medicine
Genetically encoded phosphoserine as a tool to advance kinase research and discovery

http://rinehart.commons.yale.edu/

Jesse Rinehart, PhD
Assistant Professor

Yale Systems Biology Institute

Cellular & Molecular Physiology
Yale University School of Medicine
More information:
jesse.rinehart@yale.edu
http://rinehart.commons.yale.edu/

Relevant publications:

Acknowledgements

Rinehart Lab:
Natasha Pirman, Hans Aerni, Brandon Gassaway, Justin Steinfeld, Karl Barber, Charles Xue, Svetlana Rogulina

Funding & Support

@Yale Farren Isaacs (& lab), Dieter Söll
@Harvard George Church, Marc Lajoie
@Dundee Dario Alessi (& lab)

NIH NIDDK Grant # DK089006 DARPA CONTRACT N66001-12-C-4211

Yale Systems Biology Institute
Cellular & Molecular Physiology
Yale University School of Medicine
Research Interests

• The role of protein phosphorylation in physiological systems

• Kinases and signaling networks in health & disease
 • Ion transport & Hypertension

• Decoding the phosphoproteome

(Manning et. al. Science (2002))

• Kinases comprise 2% of human genome

• Key regulators of most cellular processes

• Protein phosphorylation directs activity, localization and overall function of many proteins
How do we advance functional studies without the wiring diagram?

Kinome Phosphoproteome

A massive decoding problem.
ATTENTION!

The entire presentation will be provided to registered attendees only at the conference!

To view the rest of this exciting presentation and many more please register for the conference at

www.gtcbio.com